

SMART DRAIN INSPECTOR

Nur Ai'shafiqa Executive Engineer Catchment & Waterways Dept, PUB MAKE EVERY RA 01

Background & Current Practice

- Manual inspection of public drains are conducted once every 5 years to check for defects and abnormalities
- PUB is exploring autonomous inspection to eliminate the need for man entry into confined space, improve productivity and enhance work safety

Limitations of Current Drone being Explored

- Relatively big size
 - Unable to inspect drains that are less than 2m wide
 - > Unable to maneuver around any underground services present within the drains
- Water-phobia
 - > Needs to be tailed via man access for retrieval in a wet environment (e.g. partially submerged drains)

Smaller drains <2m width

Services crossing drains

Other Gaps to be Addressed

Manual intervention for identification of defects from inspection

- > AI to be utilized to automate defects identification
- Updating drainage network database
 - Drainage network details are currently verified through manual inspection and updated manually into geospatial database, which however is not able to cover the drain alignment
 - Need to map out the drain alignment and dimensions into a geospatial database automatically

Areas of Opportunity

To develop solutions that can autonomously:

Inspect drains as small as 0.6m width and in different environmental conditions (e.g. partially submerged conditions, submerged conditions)

Identify defects and abnormalities of drains without the need for manual post-processing Map out the alignment and dimensions of drains to an accuracy of +/- 0.1m for horizontal and vertical displacement for upload into a geospatial database

Key Considerations & Challenges

The proposed solution shall be:

- a. Able to enter drain access openings (min 0.70m x 0.85m) that are spaced at varying intervals depending on the sizes of drains (refer Table 1)
- b. Agile to avoid localised obstructions and adapt to sudden rise in water level within drains
- c. Able to eliminate the need for personnel to access into the drain
- d. Able to automatically and accurately detect and identify defects, ideally providing measurements to determine the extent of the defect.
- e. Able to automatically generate inspection reports with location data, images and video timings to support subsequent investigation and rectification works.
- f. The inspection and data processing methods, e.g. data transfer and report generation should adopt innovative methods that require minimal manual interventions in order to achieve smarter operations.
- g. Cost effective to enable large scale implementation across the drainage network in Singapore (i.e. 8000km of drains)

Table -1

Internal Width of the Drains	Distance Between Next Access Openings
W > 4m	50m
750mm < W < 2m	6m (for drain <1m deep) or 18m (for drain >1m deep)
W <750mm	6m

Expected Outcomes

If the pilot is successful, the solution would be provided to PUB through a service model where the equipment is owned, operated, and maintained by the company

Proposals should clearly indicate how [1], [2] and [3] are being addressed

MAKE EVERY DROP OUN

Thank You